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Background: 

• Understanding the dynamics of ice sheets (Antarctica, 

Greenland)  essential for projections of sea level rise. 

 

• IPCC AR4: Then-current ice sheet models inadequate to 

the task of understanding ice sheet response to climate 

forcings (AR5 – some improvement) 

 

• ASCR-BER SciDAC partnership to develop improved ice 

sheet models and their application in climate modeling 

 



Project Goals 
• Develop and apply robust, accurate, and scalable 

dynamical cores (“dycores”) for ice sheet modeling on 
structured and unstructured meshes with local/adaptive 
refinement. 

• Evaluate ice sheet models using new tools and data sets for 
Verification and Validation (V&V) and Uncertainty 
Quantification (UQ) 

• Integrate models & tools into the Community Ice Sheet 
Model (CISM) and couple to Earth System Models (ESMs) 
like CESM, ACME. 

 



PISCEES now vs. 2017 
Now:: 

• New dycore development (BISICLES, FELIX) 

• Model coupling (dycores into CISM & CISM into ESMs) 

• Initial V&V efforts (test suite automation, dataset 
gathering/massaging for use in model-obs comparison) 

• Initial UQ (low param. space / sampling-based approaches & 
exploratory use of adjoint-capable codes) 

• Baseline performance evaluations for analysis by SUPER  

2017: 
• Stand-alone and ESM fully-coupled (ocean-atmosphere-ice) 

runs with optimized initial conditions 

• Ensembles of forward model runs for UQ on model outputs 
(e.g., sea-level rise) 

 



2. Computational Strategies 
 

 

• High-level  computational approach: Solve systems of 
continuum PDEs which describe ice sheet evolution using 
finite volume or finite element approaches. 

 

• Ice: shear-thinning non-Newtonian viscous fluid. 

  

• Computation time dominated by repeated solution of large, 
nonlinear sparse elliptic systems of equations  
(solving momentum balance for the velocity field). 

 

• Codes we use:  BISICLES (Chombo) and FELIX (Trilinos). 

 

 

 

 

 
 

 

 

 

 



• These codes are characterized by these algorithms: 

 

– BISICLES: finite-volume  
block-structured adaptive mesh  
refinement (AMR) dynamical  
core (dycore) based on the  
Chombo framework, using  
PETSc linear solvers. 

 

 

 

 

– FELIX: finite-element dycore on an  
unstructured mesh, using the  
Model for Prediction Across Scales  
(MPAS) framework and Trilinos  
software packages 



•  Algorithms:  

– FEM & FVM discretizations using Trilinos and Chombo 
libraries; MPAS unstructured meshing framework 

– Newton-based (JFNK) methods for nonlinear systems  

– AMG and Krylov-based methods for linear systems  
(PETSc and Trilinos) 

 

• Computational challenges:  

– robustness of nonlinear solver over range of input 
datasets/resolutions 

– problem-specific solver convergence;  

– performance variability related to preconditioning 

 

 



• Scaling limited by:  

– problem size 

– communication overhead 

– hardware issues on *LCF (e.g. cpu layout)  

• Most work done within Trilinos, Chombo, & PETSc 

– leverage improvements made there.  

– (At least for Chombo) feed improvements back to the 
development trunk for eventual (upcoming) release. 

 

 

 



3. Current HPC Usage  

• Machines currently using (NERSC or elsewhere) 

• Hopper, initial ports to titan, local development 
machines. 

 

• Hours used in 2012-2013 (list different facilities) 

• NERSC (Hopper): 500,000 on Hopper (BISICLES: 300k, 
FELIX: 200k) 

 

• The rest of this discussion will primarily center on 
BISICLES. 

 



3. Current HPC Usage (cont)  

• Typical parallel concurrency  & run time, no. runs/year 

• Entering “production” phase with BISICLES –  Example run: 1 
km Antarctica for 100 years:  
768 processors for 77 hours (7 x 11hrs) = 60k CPU-hours.  

• Next up: 1km->500m->250m (16x); expect 4x concurrency 
(3k processors), 4x time (300 hrs) = 960k cpu-hours. 

 

• Data read/written per run 

• 1km run: 75 GB written, 750 MB read (checkpoint) 

• 250m run: 300 GB written, 3GB read  

• Memory used per (node | core | globally) 

• Memory has never been a constraint for us; the memory 
available to us on Hopper has been sufficient (parallelism has 
been driven by execution time, not memory footprint). 

 

 
 



• Necessary software, services or infrastructure 

– Compilation: C++ and Fortran compilers, PERL, MPI 

– Libraries: HDF5, NetCDF, LAPack, PETSc, (Chombo) 

– DDD or similar debugger, performance tools  

 

• Data resources used and amount of data stored 
– /scratch: 10 TB 

– /project: 1 TB 

– HPSS: 7500 SRU 

 

 

 

 



4. HPC Requirements for 2017 

• Compute hours needed (in units of Hopper hours) 

• 2B Hopper CPU-hours. 

 

• Changes to parallel concurrency, run time, number of 
runs per year 

• Increased size (2.5D->3D): 5-10x 

• Improved physics: 2-3x 

• Expect roughly 25x unknowns – rough guide to concurrency 
increase: 25k MPI tasks 

• Increased number of runs: 100 runs/yr 
 

 

 

 

 

 

 



4. HPC Requirements for 2017 

• Changes to data read/written 

• Expect more-frequent checkpointing, less-frequent regular 
data output 

• Expect roughly 500GB/run x 100 runs = 50TB/year 

 

• Changes to memory needed per ( core | node | 
globally ) 

• Roughly 25x current unknowns globally.  Expect to remain 
execution-time bound 

• Changes to necessary software, services or 
infrastructure 

• At the very least, add OpenMP threading (already 
underway) 

 

 

 

 

 

 

 

 



5. Strategies for New Architectures (1 of 2) 

• Does your software have CUDA/OpenCL directives; if yes, are they used, 
and if not, are there plans for this?   
– Not currently, no plans at the moment 

 

• Does your software run in production now on Titan using the GPUs? 
– No 

 

• Does your software have OpenMP directives now; if yes, are they used, 
and if not, are there plans for this? 
– Not currently, but implementation in Chombo is underway 

  

• Does your software run in production now on Mira or Sequoia using 
threading? 
– No. 

• Is porting to, and optimizing for, the Intel MIC architecture underway or 
planned?   
– Not currently on my side of things. 

  



5. Strategies for New Architectures (2 of 2) 
• Have there been or are there now other funded groups or researchers 

engaged to help with these activities? 
• PISCEES is engaged with SUPER (Williams (LBNL) and Worley (ORNL) ) to assist with 

performance improvement on current and impending architectures. 

 

• If you answered "no" for the questions above, please explain your strategy 
for transitioning your software to energy-efficient, manycore architectures 
• We plan to heavily leverage FASTMath/SUPER-sponsored work to transition/adapt 

Chombo, PETSc, HDF5, etc to the next generation of architectures. 

 

• What role should NERSC play in the transition to these architectures?  
• At the very least, training and support for users making these transitions. 

• Work with tool developers to design the next generation of debuggers and performance 
tools. 

 

• What role should DOE and ASCR play in the transition to these 
architectures?  
• Algorithm, library, and tool development to move existing scientific software forward to 

the new architectures. 

 

 



5. Special I/O Needs 

• Does your code use checkpoint/restart capability now? 
• Yes. 

 

• Do you foresee that a burst buffer architecture would provide significant 
benefit to you or users of your code? 

• Yes – would result in more-frequent checkpointing resulting in less lost work due to 
failures (due to code crashes, hardware failures, and simple underestimation of runtimes). 

• Checkpoint size is substantially bigger than regular data plotfiles, so they get written less 
frequently 

 

Scenarios for possible Burst Buffer use are on  
http://www.nersc.gov/assets/Trinity--NERSC-8-RFP/Documents/trinity-
NERSC8-use-case-v1.2a.pdf 



6. Summary 
• What new science results might be afforded by improvements in NERSC 

computing hardware, software and services?  
• More reliable/accurate estimates of ice sheet response to more climate forcing scenarios. 

 

• Recommendations on NERSC architecture, system configuration and the 
associated service requirements needed for your science 

• We don’t expect to need the massive single-job parallelism like others, but we do 
anticipate a fairly large (by today’s standards) need for computing resources. 

• Our needs are more aligned with capacity class (i.e. NERSC) vs. leadership class resources.  
 

• NERSC generally refreshes systems to provide on average a 2X performance 
increase every year.  What significant scientific progress could you achieve 
over the next 5 years with access to 32X your current NERSC allocation?   

• Improved spatial and temporal accuracy  

• improved (more complex/realistic) physics 

• Many runs to explore parameter spaces, begin to evaluate uncertainties (hundreds?) 

 

• What "expanded HPC resources" are important for your project? 
• Capacity to support reasonable queue turnaround time for the problem sizes we need. 

 


